Организация ЭВМ и систем. Однопроцессорные ЭВМ. Часть 1



Числа с плавающей запятой - часть 2


В процессе вычислений числа могут оказаться ненормализованными. Обычно ЭВМ автоматически нормализует такие числа, выполняя ряд действий. На рис. 2.9 представлен обобщенный формат представления ЧПЗ в микро- и миниЭВМ.

Пусть r старших разрядов S-ричной мантиссы равны нулю. Тогда нормализация состоит:

- из сдвиг мантиссы на r разрядов влево;

- уменьшения PСМ

на r единиц;

- запись нуля в r младших разрядах мантиссы.

При этом число не изменяется, а условия нормализации выполняются.

Пример.

Нормализовать двоичное число.

Ненормализованное двоичное число:

Нормализованное двоичное число:

Пример.

Нормализовать двоичное число.

Ненормализованное двоичное число:

Нормализованное двоичное число:

Следует иметь в виду, что нормализация может происходить в другую сторону, если в результате выполнения операции слева от точки появилась единица. В этом случае необходимо выполнить следующие операции:

- сдвиг мантиссы на один разряд вправо;

- увеличение PСМ

на единицу.

В различных ЭВМ числа с плавающей запятой используются в системах счисления с различными основаниями S, но равными целым степеням числа 2, т.е. S=2W. При этом порядок представляют целым числом, а мантиссу q – числом, в котором группы по W двоичных разрядов изображают цифры мантиссы с основанием системы счисления S=2W. В современных ЭВМ используются, как правило, S = 2, 16.

Использование S>2 позволяет:

- расширить диапазон представления чисел;

- ускорить выполнение операций нормализации, поскольку сдвиг может сразу происходить на несколько разрядов (при S=16 – сдвиг на 4 разряда).

Пример.

В результате операции получили (S=16):

Произведем нормализацию. Для этого q нужно сдвинуть влево на один шестнадцатеричный разряд, т.е. на 4 двоичные единицы, а из P вычесть 1. В результате получим

Итак, диапазон представляемых в ЭВМ чисел с плавающей запятой зависит от основания системы счисления S и числа разрядов, выделенных для P.


Содержание  Назад  Вперед