Нейрокомпьютерные системы



Адаптивная резонансная теория (АРТ)


Серьезная проблема для нейронных сетей - правильное соотношение стабильности и пластичности при запоминании образов. Существуют наборы эталонов (даже состоящие всего из 4-х векторов), которые при циклическом предъявлении в обучении дают никогда не сходящиеся наборы параметров сети. Предъявление всего одного нового образа в обучающем множестве часто приводит к долгому переобучению. Если сеть работает в реальном времени, например, обрабатывает сенсорную информацию, то обучающее множество может все время меняться. Для большинства моделей нейронных сетей это приводит к отсутствию обучения вообще.

Человеческая память, напротив, эффективно хранит и корректирует запоминаемые образы. Ни предъявление нового образа, ни изменение старых не приводит к уничтожению памяти или невозможности запоминания. Даже удаление части нервной ткани чаще всего не прерывает работу сети и не стирает запомненные образы, а лишь делает их менее четкими.

Сеть АРТ - попытка приблизить механизм запоминания образов в искусственных НС к биологическому. Результатом работы АРТ является устойчивый набор запомненных образов и возможность выборки "похожего" вектора по произвольному предъявленному на входе вектору. Важное качество АРТ - динамическое запоминание новых образов без полного переобучения и отсутствие потерь уже запомненных образов при предъявлении новых.




Содержание  Назад  Вперед