Нейрокомпьютерные системы



Определение мягкой экспертной системы. Сравнение нечеткой и мягкой экспертных систем


Нечеткие экспертные системы (ЭС) используют представление знаний в форме нечетких продукций и лингвистических переменных. Основу представления лингвистической переменной составляет терм с функцией принадлежности. Способ обработки знаний в нечетких ЭС - это логический вывод по нечетким продукциям. Особенностью нечеткой ЭС является способ извлечения функций принадлежности, который сводится либо к статистическим методам построения, либо к методу экспертных оценок. Мягкой ЭС (МЭС) будем называть нечеткую ЭС, которая обладает следующими особенностями:

  • использует статистические данные, которые интерпретирует как обучающие выборки для нечетких нейронных сетей;
  • представляет знания в виде лингвистических переменных (функций принадлежности - ФП), нечетких продукций и обученных нейронных сетей. Редукция множества нечетких продукций,настройка ФП и базы правил выполняется с помощью генетических алгоритмов (ГА).

Мягкими называют вычисления, сочетающие теорию нечетких систем, нейронные сети, вероятностные рассуждения и генетические алгоритмы, и обладающие синергическим эффектом; следовательно, мягкой экспертной системой называют ЭС, сочетающую перечисленные теории ради того же эффекта взаимного усиления.

Рассмотрим возможные применения МЭС в автоматизированном проектировании. Обобщенной моделью проектирования является иерархически-блочный метод, сущность которого сводится к декомпозиции функций с последующим выделением иерархий систем и подсистем. Проектируемая система формируется с помощью синтеза таких подсистем. Анализ в ходе автоматизированного проектирования обычно заключается в том, что необходимо рассмотреть условия эксплуатации будущей системы или ее окружения, которое является сложной системой (например, для экономических информационных систем окружающая среда - это социально-экономическая среда). Кроме анализа окружающей среды в ходе проектирования приходится выполнять анализ результатов физических или численных экспериментов и имитационного моделирования. Можно выделить два основных принципа экспертной деятельности в ходе проектирования.




Содержание  Назад  Вперед